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INTRODUCTION
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Objective:
Characterization of glass fiber reinforced composite: 

Tomography & 
reconstruction

[Dupont] Raw Volume

Structural & 
mechanical 

characterization

Cropped volume



CHALLENGES
• Large number of objects

• Arbitrary size/orientation
• Regular and irregular shapes

• Low contrast
• Imaging & reconstruction noise
• No ground truth 
• Large volumes

3[ACME Lab 
Purdue]

Low contrast void

Ring artifact

Irregular volumes



PRELIMINARY WORK: MODEL BASED SEGMENTATION:
ACTIVE CONTOURS MPP
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Sample Object 𝜔! = (𝑘! , 𝑟!)

𝑟!

𝑘!

Marked point process & active contours

𝑟!

𝑘!

Sample deformed object '𝜔!

Sample MPP

Sample results

𝜔!: marked	𝑖𝑡ℎ object
𝑘!:	𝜔!"𝑠 (x,	y) coordinate	
𝑟!: 𝜔!"𝑠 radious

𝑟!
𝑘!

𝐸"!

Sample MPP + AC

2.5D results



TIANYU’S WORK:
FIBERS: CONNECTED TUBE MPP
• Model fibers as connected tubes

𝜔! = (𝑘! , 𝑟! , ℎ! , 𝜃" , 𝜃#)

2D cross section

3D view

𝜔!: marked	𝑖𝑡ℎ object
𝑘!:	𝜔!"𝑠 (x,	y) coordinate	
𝑟!: 𝜔!"𝑠 radious
ℎ!: 𝜔!"𝑠 length
𝜃!#: 𝜔!"𝑠 orientation	with	respect	to	XY	plane
𝜃!$: 𝜔!"𝑠 orientation	with	respect	to	Z	axis 6

Li [1]



SAMPLE RESULTS OF MPP
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Original Image Model Based Output

Colors:	fiber	instances	
White:	voids
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MPP + AC MPP + LS

Embedded learning

Center regression



DRAWBACKS OF MPP:  COMPUTATION TIMES
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Window 
Size Voxels MPP Fibers MPP Voids

140 micron 300x300x300 18 mins 3 mins

700 micron 500x500x500 6  hours 20 mins

1900 micron 2500x2500x1300 19 days** 26 days**

2025×2025 voxels

1350 
voxels

Computation Times*:

* Measured in Rice cluster: single core Intel Xeon-E5 processor
** Estimated for single core from parallel implementation using 20 cores

300 
voxels

300×300 voxels

MPP: Marked point process



DRAWBACKS OF MPP: SEPARATE MODELS
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Input 

2.5D
slice

stacking

+ 3D 
overlapped

results 

3D MPP
connected 

tube

2D MPP
active 

contours

Detected Objects
Missing Objects



DRAWBACKS OF MPP: PARAMETER DEPENDENT
NOT PRECISE

11Sample volume

Magnification



VOID AND FIBER SEGMENTATION USING 
DEEP EMBEDDING LEARNING
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Objective:
• Obtain semantic and instance segmentation
• Unify framework for voids and fibers
• Speed up inference time
• Refine segmentation



PROPOSED SURROGATE METHOD: 

Sample sub-volumes

AC  MPP 

Network training with model-based-results: 

+

Overlap

Model-based methods

Tube MPP

Model-based results

Neural 
Networks

Train Neural Networks

Window length 
300 voxels



SEMANTIC SEGMENTATION
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Abel [2]



• Dilated filters
• Captures contextual information
• Low memory requirements

POPULAR ARCHITECTURES FOR 
SEMANTIC SEGMENTATION
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U-Net DeepLabv3

• Skipped connections
• Captures local & 

contextual information
• Low memory 

requirements

R-Net

• Residual layers
• Captures local information
• High memory requirements

R R R R R

R Residual layer

Convolutional layer

Dilated filters

Ronneberger[4]Konopczyński[3]

Chen[5] 



COMPARISON FOR SEMANTIC SEGMENTATION
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Method f1 fibers f1 voids
U-Net* 0.809 0.622

Residual Net** 0.326 0.067

DeeplabV3* 0.420 0.701

**window size = 96

*window size = 192

Trained and tested in GPU NVIDIA-TITAN RTX with 25 GBs of memory

f1 score:
𝑓1 =

𝑇𝑃

𝑇𝑃 + 12 (𝐹𝑃 + 𝐹𝑁)

TP: true positive, FP: false positive, FN: false negative

- Measures pixel-wise accuracy
- 0: lowest precision/recall
- 1: best precision/recall



SEMANTIC SEGMENTATION: RESULTS
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Fiber
Void
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𝜇!$%&$'!%(= 120

RESULTS COMPARED TO TRAINING DATA

Model Based Methods CNN Outputs

Over segmented voids



RESULTS COMPARED TO TRAINING DATA

21𝜇!$%&$'!%(= 70

Large under-detected voids

Model Based Methods CNN Outputs
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Semantic  
segmentation

Semantic
Network

Instance 
Network

Instance  
segmentation

Sample tile

INSTANCE SEGMENTATION



APPROACHES FOR 3D INSTANCE SEGMENTATION
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• 3D R-CNN
• Object Proposal
• Marks regression 

• 3D Deep Watershed
• Optimal watershed 

energy estimation
• Apply Watershed 

postprocessing

• Embedded space  
• Output embedded 

channels
• Use clustering 

algorithms on 
embedded channels

Ren[6]

Bai[7]

Bert De Brabandre[8]



MASK RCNN CONSTRAINS
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Full Volume bounding boxes Sample bounding boxes

Dense subvolumes
Broken objects



DEEP WATERSHED CONTAINS 
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Sample watershed energy Sample segmentation



FEATURE EMBEDDED LEARNING
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• Learns to separate instance voxels in latent feature space
• A clustering algorithm is applied to separate instances

Training iterations
Embedded space

Image space Bert De Brabandre[8]



EMBEDDED LEARNING LOSS
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C	:			Number	of	instances/clusters
𝜇.: 𝑐/0 cluster center
𝑆.:			Set	of	voxels	representing	instance	c
𝑒!:				𝑖/0 embedded	voxel	output	
𝑎 1 = max(𝑎, 0)

𝑙*+'-
𝑙*+,,

Bert De Brabandre[8]



EXTEND U-NET TO DETECT INSTANCES

3D U-Net Embedded
Space(K = 2) Clustering

Output channels: K-embeddings

28

Instance
Segmentation

Semantic
Segmentation
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Iteration n=0 n=10 n=50

n=100 n=500 n=2000

Reduced dimensionality for display with (t-SNE)

LEARNING EMBEDDED SPACE (K = 12) 



LABELED EMBEDDED SPACE (K = 12) 
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Iteration n=0 n=10 n=50

n=100 n=500 n=2000

Reduced dimensionality for display with (t-SNE)



CLUSTERING: DBSCAN
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Density-based spatial clustering of applications with noise

Embedded space:
Reduced dimensions with 

TSNE
Sample DBSCAN

algorithm

Clustered points.
Each color represents 

an instances

Noise pixels𝜖 ≡ eps

Ester[9]
GIF source: [10]



SAMPLE RESULTS
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Embedded space
2D with TSNE

Volume space



VOLUME TILING AND MERGING

Semantic  
segmentation

Tile 
merging Inference
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Semantic
Network

Raw 
volume

Instance 
Network

Instance  
segmentation

Volume 
tiling



TILE MERGING
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Sample Merging
Overlapping ratio: 50% of window length

Overlapping tiles

Tile inference

𝑉! 𝑉2

Overlapping inferences
𝑉! 𝑉2

𝑉! 𝑉2

Fiber merging

𝑉!
𝑉2



PROPOSED SURROGATE METHOD: 

Sample sub-volumes

AC  MPP 

+

Overlap

Model-based methods

Tube MPP

Model-based results

Neural 
Networks

Train Neural Networks

Window length 
300 voxels

Semantic  
segmentation

Tile 
merging Inference

Semantic
Network

Raw 
volume

Instance 
Network

Instance  
segmentation

Volume 
tiling

Training

Testing



TIME COMPARISON
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2025x2025 voxels

1350 
voxels

Window 
Size Voxels Training

Semantic
Training
Instance

Testing
Semantic

Testing
Instance

140 micron 300x300x300 1 hour 2 days < 1 minute 2 mins

700 micron 500x500x500 1 hour 2 days 2 mins 48 mins

1900 micron 2500x2500x1300 1 hour 2 days 26 minutes 19 hours

Model Based: Marked Point Process

CNN: Instance embedding learning

*Estimated times

Window 
Size Voxels MPP Fibers MPP Voids

140 micron 300x300x300 18 mins 3 mins

700 micron 500x500x500 6  hours 20 mins

1900 micron 2500x2500x1300 *19 days *26 days



Property Sangid Group Comer Group
Fiber volume 
fraction

9.47 % 9.21%

Void volume 
fraction

3.63 % 2.78%

Number of fibers 4613 4045

Fibers with 
aspect ratio > 5

2108
45.70%

1858 fibers
45.96%

VALIDATION WITH STATISTICS

38



39

COMPARISON OF APPROACHES



FINAL RESULTS
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Reconstructed volume Fiber detection Void detection



SAMPLE VIEWS

41CNN OutputsOriginal Image



SAMPLE VIEWS
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Original Image



SAMPLE VIEWS
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CNN Output



TESTING DATASET: SYNTHETIC DATASET
Method f1 score

MPP 0.932

R-Net 0.855

Proposed-trained 
with MPP 

0.880

Proposed-trained 
with labels

0.930

Sample volume

Labeled volume
44

Detection comparison

Volume size[voxels]

Inference time
[minutes]

Dataset obtained from: Konopczyński[3]



CONCLUSION OF THIS APPROACH
• We proposed a unified fiber-void segmentation 

with an encoder-decoder architecture
• x20 memory efficiency over other architectures

• We obtained:
• x24 time gain for detecting fibers over model-based
• x32 time gain for detecting voids over model-based
• x4.5 time gain over Sangid’s group approach

• Verified fiber and void statistics

45
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MPP + AC MPP + LS

Embedded learning

Center regression



FIBER DATASETS
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Synthetic dataset* Low-resolution dataset*
Polybutylene terephthalate PBT reinforced 
with short glass fibers 

High-resolution dataset**
Polypropylene matrix reinforced with short 
glass fibers

• Size = 586 × 584 × 627 
• Resolution = 3.2 𝜇m 
• True labels

• Fiber 𝑟 = 6.5 𝜇m
• Fiber length = 500 𝜇m

• Size =  200 × 200 × 260 
• Resolution = 3.9 𝜇m 
• Labels from watershed

• Fiber 𝑟 = 10 𝜇m
• Fiber length = 500 𝜇m

• Size =  950 × 950 × 150 
• Resolution = 2.4 𝜇m 
• Labels from Agyei[13]

• Fiber 𝑟 = 5 𝜇m
• Fiber length = 200 𝜇m

Datasets obtained from: **Konopczyński[3]
**Hanhan[11]



DRAWBACKS OF EMBEDDING LEARNING
• Embedding does not have a physical meaning
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Volume inference

Embedded inference
f1 score vs embeddings
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DRAWBACKS OF EMBEDDING LEARNING
• Embedding does not have a physical meaning
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Volume inference

Embedded inference
f1 score vs embeddings

Lo
w

 R
es

ol
ut
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n 

D
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et



DRAWBACKS OF EMBEDDED LEARNING
• Sensitivity to 𝜖(eps) parameter
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Sy
nt

he
tic

 D
at

as
et

eps=0.1 eps=0.4 eps=1.2

Merged fibers

Merged clusters

All fibers noise

All points noise
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DRAWBACKS OF EMBEDDED LEARNING:
SHAPE INDEPENDENT CLUSTERS

Labeled 
Images

Inference

Broken fibers Merged parallel fibers Merged perpendicular fibers



CENTER REGRESSION
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Objective:
-Generalize fiber detection for other datasets
-Relate clustering parameter to physical properties
-Regularize clustering



RELATED WORKS: CENTER REGRESSION [14] (NEVEN)
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RELATED WORKS: MULTITASK LEARNING[15] (KENDALL)
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CLUSTERING-BASED SEGMENTATION METHODS
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Multitask
Network

OPTICS/ 
DBSCAN 
clustering

Center Regression
Neven[14]

Multitask Learning 
Kendall[15]

Semantic
segmentation

Semantic
Network

Embedded 
Learning

DBSCAN
clustering

Semantic
segmentation

Embeddings Instance
segmentation

Semantic
Network

Center 
Regression

OPTICS/ 
DBSCAN 
clustering

Semantic
segmentation Object

centers
Instance

segmentation

Object
centers

Instance
segmentation

Input
data

Input
data

Input
data

Embedded Learning]



CENTER REGRESSION: 
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𝑙!"#$"% =
1
𝐶
&
!&'

(

&
)!∈+"

𝑜, − 𝜇! -
- − 𝛿. /

C	:			Number	of	instances/clusters
𝜇.: 𝑐/0 fiber center
𝑆.:			Set	of	voxels	representing	instance	c
𝑜!:				𝑖/0 center	voxel	output	
𝑎 1 = max(𝑎, 0)

Raw volume Labeled image Center regression



58CT subvolume

CENTER REGRESSION ACROSS OTHER DATASETS: 

Labeled image Center Regression

Synthetic fibers

Low resolution
SFRP

High resolution
SFRP



DBSCAN STILL PRESENTS DIFFICULTIES
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Center Regressed Pixels Segmentation



GEOMETRIC CLUSTERING
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Sample image Birthmap computation

Labeled Image Labeled regressed pixels



GEOMETRIC CLUSTERING
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Sample image Birthmap computation

Labeled Image Labeled regressed pixels

𝜖



GEOMETRIC CLUSTERING
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Sample image Birthmap computation

Labeled Image Labeled regressed pixels

Cluster proposal

𝜖



GEOMETRIC CLUSTERING
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Sample image Birthmap computation

Labeled Image Labeled regressed pixels Inference

Cluster proposal



PROPOSED: 
CENTER REGRESSION + GEOMETRIC 
CLUSTERING

Semantic
Network

Center 
Regression

Geometric 
clustering

Semantic
segmentation

Object
Centers

Instance
segmentation

Input
data



SYNTHETIC DATASET - TEST DATA
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Raw volume Segmentation

Method f1
Embedded 
learning

0.983

Multitask learning 0.977

Centroid 
regression + 
DBSCAN

0.993

Centroid 
regression + 
geometric 
clustering

0.973
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Raw volume Labels Multi-Task Center 
regression only

Proposed

Method f1
Embedded learning 
and DBSCAN

0.634

Multitask learning 0.831

Centroid regression 
and DBSCAN

0.832

Proposed 0.917

RESULTS
LOW RESOLUTION SFRP

White: noise pixelsCross section



RESULTS
HIGH RESOLUTION SFRP
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Method f1
Embedded learning 
and DBSCAN

0.604

Multitask learning 0.733

Centroid regression 
and DBSCAN

0.767

Proposed 0.855

Raw volume Labels Multi-Task Center 
regression only

Proposed



RESULTS VS EPS PARAMETER
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Synthetic Fibers Low Res Fibers High resolution fibers

f1

Mean fiber 𝑟̂ = 2.03 pixels Mean fiber 𝑟̂ = 2.56 pixels Mean  fiber 𝑟̂ = 2.08 pixels

*eps parameter for embedded learning has a different scale



CONCLUSION OF THIS APPROACH
• Our approach shows robustness across 

several datasets thanks to the center 
regression

• The geometric clustering allows to 
constraint the segmentation with prior 
image knowledge (cylindrical objects)

• The 𝜖 parameter has a physical relation to 
the fiber objects

71
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MPP + AC MPP + LS

Embedded learning

Center regression



• Model Based:

• MPP + active contours

• MPP + level sets

• Deep Learning:

• 3D embedded segmentation

• 3D regression + geometric clustering
73

CONTRIBUTIONS OF THIS THESIS
MPP + AC

MPP + LS

Embedded learning

Center regression



• C. Aguilar and M. Comer, "A Marked Point Process Model Incorporating Active Contours 
Boundary Energy,'' Electronic Imaging, vol. 2018, no. 15.

• C. Aguilar and M. Comer, "Void detection and fiber extraction for statistical 
characterization of fiber-reinforced polymers,'' Electronic Imaging, vol. 2020, no. 23.

• *C. Aguilar and M. Comer, “Segmentation and Detection of Irregularly-Shaped Regions 
Using Integrated Marked Point Processes and Level Sets,” in IEEE Transactions on 
Image Processing to be submitted July 2020.

• *C. Aguilar and M. Comer, "3D Fiber Segmentation with Deep Center Regression and 
Geometric Clustering,'' in IEEE Transactions on Image Processing. To be submitted July 
2020.
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PUBLICATIONS OF THIS THESIS
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