

Novel Model-Based and Deep Learning Approaches to Segmentation and Detection in 3D Microscopy Images

Camilo Aguilar PI: Mary Comer Thesis Defense July 20th, 2020

School of Electrical and Computer Engineering

OVERVIEW

- Introduction
 - Problem statement
 - Preliminary work

Void and Fiber Segmentation Using Deep Learning

- Voids: 3D semantic segmentation
- Fibers: 3D embedded learning

3D Fiber Detection using centroid regression

- Center regression
- 3D object proposals •

Summary

- Thesis contributions
- Published works

Embedded learning

MPP + LS

INTRODUCTION

Objective:

Characterization of glass fiber reinforced composite:

CHALLENGES

- Large number of objects
 - Arbitrary size/orientation
 - Regular and irregular shapes
- Low contrast
- Imaging & reconstruction noise
- No ground truth
- Large volumes

Low contrast void

Ring artifact

Irregular volumes

3

PRELIMINARY WORK: MODEL BASED SEGMENTATION: ACTIVE CONTOURS MPP

Marked point process & active contours

Sample Object $\omega_i = (k_i, r_i)$

 ω_i : marked *ith* object $k_i: \omega'_i s$ (x, y) coordinate $r_i: \omega'_i s$ radious

Sample MPP

Sample results

Sample MPP + AC

2.5D results

Sample deformed object $\widehat{\omega}_i$

TIANYU'S WORK: FIBERS: CONNECTED TUBE MPP

Model fibers as connected tubes

 ω_i : marked *ith* object $k_i: \omega'_i s (x, y)$ coordinate $r_i: \omega'_i s$ radious $h_i: \omega'_i s$ length $\theta_i^Y: \omega'_i s$ orientation with respect to XY plane $\theta_i^Z: \omega'_i s$ orientation with respect to Z axis

2D cross section

3D view

6

SAMPLE RESULTS OF MPP

Colors: fiber instances White: voids

Original Image

Model Based Output

OVERVIEW

- Introduction
 - Problem statement
 - Preliminary work

Void and Fiber Segmentation Using Deep Learning

- Voids: 3D semantic segmentation
- Fibers: 3D embedded learning •

3D Fiber Detection using centroid regression

- Center regression
- 3D object proposals •

Summary

- Thesis contributions
- Published works

Center regression

MPP + LS

DRAWBACKS OF MPP: COMPUTATION TIMES

Computation Times*:

MPP: Marked point process

DRAWBACKS OF MPP: SEPARATE MODELS

DRAWBACKS OF MPP: PARAMETER DEPENDENT NOT PRECISE

Sample volume

VOID AND FIBER SEGMENTATION USING DEEP EMBEDDING LEARNING

Objective:

- Obtain semantic and instance segmentation
- Unify framework for voids and fibers
- Speed up inference time
- Refine segmentation

PROPOSED SURROGATE METHOD:

Network training with model-based-results:

SEMANTIC SEGMENTATION

Abel [2]

POPULAR ARCHITECTURES FOR SEMANTIC SEGMENTATION

R-Net

- Residual layers
- Captures local information
- High memory requirements

U-Net

Ronneberger[4]

- Skipped connections
- Captures local & contextual information
- Low memory requirements

- Dilated filters
- Captures contextual information
- Low memory requirements

COMPARISON FOR SEMANTIC SEGMENTATION

f1 score:

$$F1 = \frac{TP}{TP + \frac{1}{2}(FP + FN)}$$

TP: true positive, FP: false positive, FN: false negative

- Measures pixel-wise accuracy

- 0: lowest precision/recall
- 1: best precision/recall

Method	f1 fibers	f1 voids
U-Net*	0.809	0.622
Residual Net**	0.326	0.067
DeeplabV3*	0.420	0.701

*window size = 192

**window size = 96

Trained and tested in GPU NVIDIA-TITAN RTX with 25 GBs of memory

SEMANTIC SEGMENTATION: RESULTS

19

RESULTS COMPARED TO TRAINING DATA

Over segmented voids

Model Based Methods

 $\mu_{intensity}$ = 120 CNN Outputs

RESULTS COMPARED TO TRAINING DATA

INSTANCE SEGMENTATION

APPROACHES FOR 3D INSTANCE SEGMENTATION

• 3D R-CNN

- Object Proposal
- Marks regression

3D Deep Watershed

- Optimal watershed energy estimation
- Apply Watershed
 postprocessing

Embedded space

- Output embedded channels
- Use clustering algorithms on embedded channels

Bert De Brabandre[8] 23

DEEP WATERSHED CONTAINS

Sample watershed energy

Sample segmentation

FEATURE EMBEDDED LEARNING

- Learns to separate instance voxels in latent feature space
- A clustering algorithm is applied to separate instances

Bert De Brabandre[8]

EMBEDDED LEARNING LOSS

$$l_E = l_{pull} + l_{push} + l_{reg}$$

$$l_{pull} = \frac{1}{C} \sum_{c=1}^{C} \frac{1}{|S_c|} \sum_{e_i \in S_c} (\|e_i - \mu_c\|_2^2 - \delta_v)_+$$

$$l_{push} = \frac{1}{C(C-1)} \sum_{i=1}^{C} \sum_{j=1}^{C} \left(\delta_{p} - \left\| \mu_{i} - \mu_{j} \right\|_{2}^{2} \right)_{4}$$

Bert De Brabandre[8]

- *C*: Number of instances/clusters
- μ_c : c^{th} cluster center
- S_c : Set of voxels representing instance c
- e_i : i^{th} embedded voxel output

$$(a)_+ = \max(a, 0)$$

EXTEND U-NET TO DETECT INSTANCES

Reduced dimensionality for display with (t-SNE)

LEARNING EMBEDDED SPACE (K = 12)

40

Reduced dimensionality for display with (t-SNE)

LABELED EMBEDDED SPACE (K = 12)

30

CLUSTERING: DBSCAN

Density-based spatial clustering of applications with noise

SAMPLE RESULTS

Embedded space 2D with TSNE

Volume space

VOLUME TILING AND MERGING

TILE MERGING

Overlapping tiles

Tile inference

Overlapping inferences

Fiber merging

Sample Merging Overlapping ratio: 50% of window length

PROPOSED SURROGATE METHOD:

TIME COMPARISON

Model Based: Marked Point Process

Window Size	Voxels	MPP Fibers	MPP Voids
140 micron	300x300x300	18 mins	3 mins
700 micron	500x500x500	6 hours	20 mins
1900 micron	2500x2500x1300	*19 days	*26 days

CNN: Instance embedding learning

Window Size	Voxels	Training Semantic	Training Instance	Testing Semantic	Testing Instance
140 micron	300x300x300	1 hour	2 days	< 1 minute	2 mins
700 micron	500x500x500	1 hour	2 days	2 mins	48 mins
1900 micron	2500x2500x1300	1 hour	2 days	26 minutes	19 hours

VALIDATION WITH STATISTICS

Property	Sangid Group	Comer Group
Fiber volume fraction	9.47 %	9.21%
Void volume fraction	3.63 %	2.78%
Number of fibers	4613	4045
Fibers with aspect ratio > 5	2108 45.70%	1858 fibers 45.96%

COMPARISON OF APPROACHES

FINAL RESULTS

Reconstructed volume

Fiber detection

Void detection

SAMPLE VIEWS

SAMPLE VIEWS

Original Image

SAMPLE VIEWS

CNN Output

TESTING DATASET: SYNTHETIC DATASET

[minutes]

Sample volume

Labeled volume

Dataset obtained from: Konopczyński[3]

Method	f1 score	
MPP	0.932	
R-Net	0.855	
Proposed-trained with MPP	0.880	
Proposed-trained with labels	0.930	

Detection comparison

CONCLUSION OF THIS APPROACH

- We proposed a unified fiber-void segmentation with an encoder-decoder architecture
 - x20 memory efficiency over other architectures
- We obtained:
 - x24 time gain for detecting fibers over model-based
 - x32 time gain for detecting voids over model-based
 - x4.5 time gain over Sangid's group approach
- Verified fiber and void statistics

OVERVIEW

- Introduction
 - Problem statement
 - Preliminary work

Void and Fiber Segmentation Using Deep Learning

- Voids: 3D semantic segmentation
- Fibers: 3D embedded learning

3D Fiber Detection using centroid regression

- Center regression
- 3D object proposals

Summary

- Thesis contributions
- Published works

Center regression

Embedded learning

MPP + LS

Datasets obtained from: **Konopczyński[3] **Hanhan[11]

FIBER DATASETS

Synthetic dataset*

- Size = 586 × 584 × 627
- Resolution = $3.2 \,\mu \text{m}$
- True labels
- Fiber $r = 6.5 \,\mu\text{m}$
- Fiber length = 500 μ m

Low-resolution dataset*

Polybutylene terephthalate **PBT** reinforced with short glass fibers

- Size = 200 × 200 × 260
- Resolution = 3.9 μ m
- Labels from watershed
- Fiber $r = 10 \ \mu m$
- Fiber length = 500 μ m

High-resolution dataset**

Polypropylene matrix reinforced with short glass fibers

- Size = $950 \times 950 \times 150$
- Resolution = 2.4 μ m
- Labels from Agyei[13]
- Fiber $r = 5 \,\mu \text{m}$
- Fiber length = 200 μ m₄₇

DRAWBACKS OF EMBEDDING LEARNING

Embedding does not have a physical meaning

Volume inference

Embedded inference

f1 score vs embeddings

DRAWBACKS OF EMBEDDING LEARNING

Embedding does not have a physical meaning

Volume inference

Low Resolution Dataset

Embedded inference

f1 score vs embeddings

DRAWBACKS OF EMBEDDED LEARNING

• Sensitivity to ϵ (eps) parameter

All points noise

eps=0.1

eps=0.4

All fibers noise

Merged clusters

eps=1.2

Merged fibers 51

DRAWBACKS OF EMBEDDED LEARNING: Shape independent clusters

Labeled Images

Broken fibers

Merged parallel fibers

Merged perpendicular fibers $_{52}$

CENTER REGRESSION

Objective:

- -Generalize fiber detection for other datasets
- -Relate clustering parameter to physical properties
- -Regularize clustering

RELATED WORKS: CENTER REGRESSION [14] (NEVEN)

RELATED WORKS: MULTITASK LEARNING[15] (KENDALL)

CLUSTERING-BASED SEGMENTATION METHODS

CENTER REGRESSION: $l_{center} = \frac{1}{C} \sum_{c=1}^{C} \sum_{o_i \in S_c} (\|o_i - \mu_c\|_2^2 - \delta_v)_+$

Raw volume

- C: Number of instances/clusters
- μ_c : c^{th} fiber center
- S_c : Set of voxels representing instance c
- o_i : i^{th} center voxel output

$$(a)_+ = \max(a, 0)$$

Labeled image

Center regression

CENTER REGRESSION ACROSS OTHER DATASETS:

Synthetic fibers

Labeled image

DBSCAN STILL PRESENTS DIFFICULTIES

Center Regressed Pixels

Segmentation

Sample image

Birthmap computation

Labeled Image

Labeled regressed pixels

Sample image

Birthmap computation

Labeled Image

Labeled regressed pixels

Sample image

Birthmap computation

Cluster proposal

Labeled Image

Labeled regressed pixels

Sample image

Birthmap computation

Cluster proposal

Labeled Image

Labeled regressed pixels

Inference

PROPOSED: CENTER REGRESSION + GEOMETRIC CLUSTERING

SYNTHETIC DATASET - TEST DATA

Raw volume

Segmentation

Method	f1
Embedded learning	0.983
Multitask learning	0.977
Centroid regression + DBSCAN	0.993
Centroid regression + geometric clustering	0.973

f1

0.634

0.831

0.832

0.917

RESULT	S	
LOW RE	SOLUTION	SFRP

Cross section

Method

Embedded learning

Centroid regression

and DBSCAN Multitask learning

and DBSCAN

Proposed

White: noise pixels

Raw volume

Labels

Multi-Task

Center regression only

Proposed

68

RESULTS **HIGH RESOLUTION SFRP**

Method	f1
Embedded learning and DBSCAN	0.604
Multitask learning	0.733
Centroid regression and DBSCAN	0.767
Proposed	0.855

69

RESULTS VS EPS PARAMETER

Mean fiber \hat{r} = 2.03 pixels

Mean fiber \hat{r} = 2.56 pixels

High resolution fibers

Mean fiber \hat{r} = 2.08 pixels

*eps parameter for embedded learning has a different scale

CONCLUSION OF THIS APPROACH

- Our approach shows robustness across several datasets thanks to the center regression
- The geometric clustering allows to constraint the segmentation with prior image knowledge (cylindrical objects)
- The ϵ parameter has a physical relation to the fiber objects

OVERVIEW

- Introduction
 - Problem statement
 - Preliminary work

Void and Fiber Segmentation Using Deep Learning

- Voids: 3D semantic segmentation
- Fibers: 3D embedded learning

3D Fiber Detection using centroid regression

- Center regression
- 3D object proposals •

Summary

- Thesis contributions
- **Published works**

Center regression

Embedded learning

MPP + AC

UN

MPP + LS

IVERSIT

CONTRIBUTIONS OF THIS THESIS

- Model Based:
 - MPP + active contours
 - MPP + level sets
- Deep Learning:
 - 3D embedded segmentation
 - 3D regression + geometric clustering

Embedded learning

PUBLICATIONS OF THIS THESIS

- C. Aguilar and M. Comer, "A Marked Point Process Model Incorporating Active Contours Boundary Energy," Electronic Imaging, vol. 2018, no. 15.
- **C. Aguilar** and M. Comer, "Void detection and fiber extraction for statistical characterization of fiber-reinforced polymers," Electronic Imaging, vol. 2020, no. 23.
- *C. Aguilar and M. Comer, "Segmentation and Detection of Irregularly-Shaped Regions Using Integrated Marked Point Processes and Level Sets," in IEEE Transactions on Image Processing to be submitted July 2020.
- *C. Aguilar and M. Comer, "3D Fiber Segmentation with Deep Center Regression and Geometric Clustering," in IEEE Transactions on Image Processing. To be submitted July 2020.

ACKNOWLEDGEMENT

This work was supported by the Air Force Office of Scientific Research (MURI–Managing the Mosaic of Microstructure) under Grant FA9550-12-1-0458 and National Science Foundation CMMI MoM, Award No. 16-62554

REFERENCES

[1] T. Li, M. Comer, and J. Zerubia, "A Connected-Tube MPP Model for Object Detection with Application to Materials and Remotely-Sensed Images," Proceedings - International Conference on Image Processing, ICIP, pp. 1323–1327, 2018.

[2] Brown, Abel. "Introduction to Object Detection and Image Segmentation". NVIDIA talk, November 2, 2017.

[3] T. Konopczyński, T. Kröger, L. Zheng, and J. Hesser, "Instance Segmentation of Fibers from Low Resolution CT Scans via 3D Deep Embedding Learning," pp. 1–12, 2019.

[4] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," *Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)*, vol. 9351, pp. 234–241, 2015.

[5] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation. *CoRR*, abs/1706.05587, 2017

[6] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In *NIPS*, 2015.

[7] Min Bai, Raquel Urtasun, Deep Watershed Transform for Instance Segmentation.

[8] Bert De Brabandre, Davy Neven, Luc Van Gool. Semantic Instance Segmentation with a Discriminative Loss Function

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, 226–231.

[10] https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

[11] I. Hanhan, R.F. Agyei, X. Xiao and M.D. Sangid. "Predicting Microstructural Void Nucleation in Discontinuous Fiber Composites through coupled in-situ X-ray Tomography Experiments and Simulations." Nature Scientific Reports (2019)

[13] Ronald F. Agyei, Michael D. Sangid. A supervised iterative approach to 3D microstructure reconstruction from acquired tomographic data of heterogeneous fibrous systems, Composite Structures, Volume 206, 2018, Pages 234-246.

[14]D. Neven, B. De Brabandere, M. Proesmans, and L. Van Gool, "Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth," *Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.*, vol. 2019-June, pp. 8829–8837, 2019.

[15] A. Kendall, Y. Gal, and R. Cipolla, "Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics arXiv : 1705 . 07115v1 [cs . CV] 19 May 2017," *Cvpr*, pp. 7482–7491, 2018.

THANKYOU