

Exploring the Addition of Boundary Energy to the Marked Point Process

Camilo Aguilar School of Electrical Engineering Purdue University July 2019

Overview

• **Motivation**

- Problem statement: MPP is limited to generic shapes
- Illustrative dataset: Fiber reinforced composites

• **Marked Point Process (MPP)**

- Set up: MPP = Point Process + Marks
- Energy minimization using multiple birth and deaths

• **Part I: MPP and parametric Active Contours(AC)**

- AC boundary energy: Smoothness and Curvature
- Combination of MPP-AC: Disks with deformed boundaries

• **Part II: MPP and Level Sets(LS)**

- LS boundary energy: Dark regions with strong edges
- Object proposal: LS alone can guide the object proposal

• **Future Work**

• Deep learning based approaches

Motivation

Introduction

Motivation – Expand the limitations of the Marked Point Process(MPP)

What is the MPP?

- Stochastic framework that models images as configuration of objects
- Considers:
	- Data in macroscopic scale
	- Object geometries
	- Relation between objects and prior knowledge
- **Problem**:
	- **MPP is limited to low-parametric geometries (disks/ellipses/tubes/lines)**

[Zhao et al. 2016] Ellipse Model

NiAlCr **Ellipse Model** Fiber Reinforced Composite [ACME Lab Purdue]

[Li et al. 2018] Connected Tube

Illustrative dataset

Objective:

Characterization of glass fiber reinforced composite:

• **Structural Features**

- Object location/orientation
- Volume ratio

• **Mechanical Features**

- Fiber breakout
- Fiber pullout

Challenges

• Irregular shapes \triangleright Active Contour Modeling

Void representation in composite:

• Low contrast ØBalloon method (MPP-AC) ØHybrid LS method (MPP-LS)

Composite cross section:

[ACME Lab Purdue]

• Large datasets ØHybrid LS method

Volume Size:

 $2500 \times 2500 \times 1300$ voxels

• Imaging and reconstruction noise \geq 3D Filtering

Composite cross

Common Segmentation Approaches

Machine Learning

Discriminative Dictionary Learning: Edge Classifier

Sparse training data

Labeled Image

Original Image The Labeled Image Classified Edges

[Mairal 2008]

Markov Random Fields EM/MPM

Pixelwise segmentation

[Comer 2000]

Original Image EMMPM. Labels = 9

Active Contours only

Hybrid Level Sets Initialization dependent

Original Image **Detected Contours**

Watershed

Watershed by flooding Requires careful energy/marker setting

[Yan 2008]

Distance Transform Watershed Segmentation [Beucher 1979]

6

Marked Point Process

Marked Point Process

- Set up point process
	- Define a Point Process \boldsymbol{x} on lattice $K \subset \mathbb{R}^d$
	- Each point k_i in $\boldsymbol{x} = \{k_1, ..., k_n\}$ denotes a coordinate.
	- n is a random variable
- Set up marks
	- A mark space M describes objects' parameters
	- Single marked object is $\omega_i = (k_i, m_i) \in K \times M$
- MPP = point process + marks
	- An object configuration is $w = {\omega_1, ..., \omega_n}$
	- An MPP w is defined on space $\Omega = K \times M$

Realization of a Point Process

Sample marked object $\omega_i = (k_i, a_i, b_i, \theta_i)$

Realization of an MPP

8

MPP density

Density:

$$
p(\mathbf{w}) = \frac{1}{z_{\Omega}} \exp(-|U(\mathbf{w})|)
$$

Gibbs Energy:

$$
U(w) = \sum_{\omega_i \in w} U_d(\omega_i) + \sum_{\substack{\omega_i \sim \omega_j \\ \omega_i, \omega_j \in w}} U_p(\omega_i, \omega_j)
$$

Data Term:

 $U_d(\omega_i) \propto$ object fitting

Prior Term:

 $U_p(\omega_i, \omega_j)$ \propto overlap penalizer

 w : Marked object configuration ω_i : Single Marked $~i^{th}$ object z_{Ω} : Normalizing constant $\omega_i \sim \omega_i$: Neighbor relation

Data Term: $U_d(\omega_i)$

Prior Term: $U_p(\omega_i, \omega_j)$

Energy Optimization

Goal: find optimal configuration

 $\max_{\mathbf{w}\in\Omega}p(\mathbf{w})=\arg\min_{\mathbf{w}\in\Omega}$ $U(w)$

Use Markov Chain Monte Carlo with stochastic annealing

Annealing scheme: \int_{0}^{birth} $T^{k+1} = T^k \alpha, \quad \alpha \in (0, 1)$

$$
w = {\omega_1} w' = {\omega'_1, \omega'_2 ... \omega'_n}
$$

Multiple Birth and Death (1) Multiple Birth and Death (2)

[Kaggle Datascience Bowl 2018]

[Descombes 09]

MPP-Active Contours

Active Contour Model

- Define curve: $C_t = \{(x_t, y_t)\}\)$, where $t \in [0, 2\pi]$
- Energy Function:

$$
E(C_t) = \int\limits_0^{2\pi} E_{int}(C_t) + E_{ext}(C_t) dt
$$

• Internal Energy:

$$
E_{\rm int}(C_t) = \int_{0}^{2\pi} \frac{1}{2} [\alpha |C'_t|^2 + \beta |C'_t|^2] dt
$$

EXECUTE:

• External Energy: $E_{\text{ext}}(C_t) = -\kappa_1 |\nabla I(x_t, y_t)|^2 - \kappa_2 |I_{\text{dark}}(x_t, y_t)| + \kappa_3 \vec{n}_C(t)$

 I_{dark} : Image is 1 in pixels with low intensities

 C_t : Parametric contour C_t : First derivative w/r to t C_t ": Second derivative w/r to t x_t , y_t : Coordinates in contour \vec{n}_C : Normal to the contour

 $I:$ Image Domain

Stop at edges The Attract to dark regions Inflate the Contour

[Cohen 1993]

Boundary Parameters

$$
E(C_t) = \int_{0}^{2\pi} \frac{1}{2} \left[|C'_t|^2 + \beta |C''_t|^2 - 0.05 | \nabla I(x_c, y_c) |^2 - 0.1 \, \vec{n}_C(t) \right] dt
$$

Initial Contour

$$
\beta = 0
$$

Boundary Energies

$$
\beta = 10
$$

 $\beta = 100$

Active Contours in the MPP

- Initial Mark Object Field:
	- Disks with mark $\omega_i = \{k_i, m_i\} \in \Omega$, $\Omega \subset K \times M$
	- $M = [r_{\min}, r_{\max}]$
- Modified Marked Object Field:
	- Define energy functional $E(\omega_i)$ on space W
	- Parametrize curve $\omega_t \in W$
	- Perform energy minimization on $E(\omega_t)$ to evolve ω_t into $\widetilde{\omega}_t \in W$ [Kulikova, 2009]

 $K:$ Image lattice Ω : Configuration space W : Parametric space w : Marked object configuration ω_i : Single marked $\,i^{th}$ object $\widetilde{\omega_{i}}$: Evolved marked i^{th} object \tilde{w} : Evolved object configuration Energies

MPP-AC Energy

• Gibbs Process with probability density

$$
p(w) = \frac{1}{Z} \exp\{-U(w)\}
$$

• Energy Function

$$
U(w) = \sum_{\omega_i \in w} U_d(\omega_i) + \sum_{\omega_i \sim \omega_j} U_p(\omega_i, \omega_j)
$$

• **Data Energy: Active Contour Energy** $U_d(\omega) = \min_{\omega}$ $\overline{\omega_i}$ \mathbb{R} & $E_{\text{int}}(\omega_t) + E_{\text{ext}}(\omega_t) dt$ = $U_d(\widetilde{\omega_t})$

 $\boldsymbol{0}$

Prior Energy

$$
U_p(\omega_i, \omega_j) = \begin{cases} A_{\text{overlap}}\left(\widetilde{\omega_{t_i}}, \widetilde{\omega_{t_j}}\right) & \text{if } A_{\text{overlap}}\left(\widetilde{\omega_{t_i}}, \widetilde{\omega_{t_j}}\right) \le T_{\text{overlap}} \\ \infty & \text{otherwise} \end{cases}
$$

 w : Marked object configuration ω_i : Single marked $~i^{th}$ object $\widetilde{\omega_{i}}$: Evolved marked i^{th} object \tilde{w} : Evolved object configuration z: Normalizing Constant $\omega_i \sim \omega_i$: Neighbor Relation

 $r_{\mathfrak{l}}$

 r_i

 $k_{\pmb{i}}$

 $\widetilde{\omega}_i$

 k_i

 ω_i

Simulation: Multiple Birth and Death

Simulation: Multiple Birth and Death

Sample Results I: Human Cells

[Kaggle Datascience Bowl 2018]

Original Image **Ground Truth** Ground Truth Marks

 $\beta = 1$ $\beta = 10$ $\beta = 100$

MPP-AC Results II: voids

Original Image **MPP-AC**

Original Image and the Communication of the MPP-AC and the MPP-AC and the MPP-AC and the Communication of the MPP-AC and the MPP-AC

MPP-AC Results III: voids and fibers

Original Image MPP-AC for voids only MPP-AC combined with MPP Connected tube

Parametrization Constrains

Contributions of this work

- Exploration of the MPP-AC to microscopy images
- Adaptation of the classic AC energy that involves smoothness and curvature.
	- Exploration of the curvature weighting effects

• Adaptation of the balloon force to capture objects with irregular shapes

MPP-Level Sets

What is a level set?

Given a function $\phi \colon \mathbb{R}^d \to \mathbb{R}$ Curve: $C_t = \{k \in \mathbb{R}^d | \phi(k) = 0\}$ is the zeroth level set of ϕ

Example of level sets and object representations Example of initial level set of ϕ

[Wikipedia]

Summary of level sets approach

Advantages of LS vs parametric AC

- Level Sets can:
	- Adapt better to topological changes
	- Allow object merging and splitting
	- Facilitate the dimension increase

Level Sets MPP- AC

Hybrid Level Sets Energy + Shape prior

- Energy Function: $E(\phi) = \alpha E_{\text{region}}(\phi) + \beta E_{\text{edge}}(\phi) + \gamma E_{\text{shape}}(\phi)$ [Yan 2008]
- $K:$ Image domain ϕ : Embedding function $H(\cdot)$: Heaviside function $g(\cdot)$: Edge function ϕ_o : Level set geometric prior

$$
E_{\text{edge}}(\phi) = \int_{k \in K} g(k) |\nabla H(\phi)| dk
$$

$$
E_{\text{prior}}(\phi) = \int_{k \in K} \left(H(\phi) - H(\phi_o) \right)^2 dk
$$

Preserve irreducible Markov Chain

Original Image

Manual label

Hybrid Level Sets Boundary Penalizer

Level Sets in the MPP

- MPP Object Field:
	- Ellipses with mark $\omega_i = (k_i, m_i) \in \Omega$
	- $M = [a_{\min}, a_{\max}] \times [b_{\min}, b_{\max}] \times [\theta_{\min}, \theta_{\max}]$
- Marked Object:
	- Use MPP object $\omega = (k_i, m_i)$ as initialization and shape prior ϕ_{α}
	- Evolve level set ϕ to $\ddot{\phi}$
	- Parametrize evolved level set $\tilde{\phi}$ to $\tilde{\omega}(t)$

From LS to parametric energy

MPP-LS Energy

• Gibbs Process with probability density

$$
p(\mathbf{w}) = \frac{1}{Z} \exp\{-U(\mathbf{w})\}
$$

 w : Marked Object Configuration $\bm{\omega}_{\bm{i}}$: Single Marked $\bm{\,i^{th}}$ Object $\widetilde{\omega_i}$: Evolved Marked *i*th Object z: Normalizing Constant $\omega_i \sim \omega_j$: Neighbor Relation E_o : Contour energy parameter

• Energy Function

$$
U(w) = \sum_{\omega_i \in w} U_d(\omega_i) + \sum_{\omega_i \sim \omega_j} U_p(\omega_i, \omega_j)
$$

- Prior Energy $U_p(\omega_i, \omega_j) = \{$ $A_{\text{overlap}}(\widetilde{\omega_i}, \widetilde{\omega_j})$ if $A_{\text{overlap}}(\widetilde{\omega_i}, \widetilde{\omega_j}) \le T_{\text{overlap}}$ ∞ otherwise
- Data Energy $U_d(\omega_i) =$ $1 - \exp\left(-\frac{E(\widehat{\omega}) - E_o}{2E}\right)$ $3E_o$ $E(\widehat{\omega}) \ge E_o$ $E(\widehat{\omega}%)\mathbf{1}_{\mathrm{C}}$ E_o $\mathbf 1$ $\overline{3}$ − 1 otherwise

Human red blood cells

Original Image Ground Truth

F1 Scores

- Background
	- Pixelwise segmentation
- Outlines
	- Edges separated by a distance < 2 pixels
- Counts
	- Intersection over union IOU > 80%

NiCrAl Particles

Original Image **MPP** MPP MPP-LS

Multiple Object Level Set

Goal: Use level sets to propose objects

Voids in fiber reinforced composites

Original Image The Level Sets Only The MPP-LS

Contributions of this work

- Addition of the level sets method to the MPP model
- Extension of the a Hybrid level sets to incorporate a shape prior

• The use of level sets results to provide object proposals

Extension to 3D

Use MPP-LS at each slice and filter

Towards Deep Learning

U-Net beats its training data

Original Image Training Data and U-Net

- 3D U-Net Generalizes data extremely well
- 3D U-Net improves the results of its training data
- The GPU setup makes it significantly faster than MPP-LS

Fiber Class

Faster RCNN could help guiding MCMC

Faster-RCNN Anchor Proposals

Original Image

Fast RCNN has parallel relations with RJMCMC:

- Anchor Proposal ≡ birth death process
- Bounding Box Refinement \equiv perturbations

Faster-RCNN Results

References

- M. Kulikova, I. Jermyn, X. Descombes, E. Zhizhina, and J. Zerubia, "Extraction of arbitrarily-shaped objects using stochastic multiple birth-and-death dynamics and active contours," Electronic Imaging, vol. 7533, 2010
- H. Zhao and M. Comer, "A hybrid markov random field/marked point process model for analysis of materials images," IEEE Transactions on Computational Imaging, vol. 2, no. 4, pp. 395–407, Dec 2016
- T. Li, M. Comer, and J. Zerubia, "A Connected-Tube MPP Model for Object Detection with Application to Materials and Remotely-Sensed Images," Proceedings - International Conference on Image Processing, ICIP, pp. 1323–1327, 2018.
- Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman. Supervised Dictionary Learning. [Research Report] RR-6652, INRIA. 2008, pp.15. inria-00322431
- M. L. Comer and E. J. Delp, "The EM/MPM algorithm for segmentation of textured images: Analysis and further experimental results," IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1731–1744, 2000.
- Kass, M., Witkin, A. & Terzopoulos, "Snakes: Active contour models,"D. Int J Comput Vision (1988) 1: 321
- X. Descombes, R. Minlos, and E. Zhizhina, "Object extraction using a stochastic birth-and-death dynamics in continuum," Journal of Mathematical Imaging and Vision, vol. 33, no. 3, pp. 347–359, Mar 2009.
- Z. Yan, B. J. Matuszewski, L. K. Shark, and C. J. Moore, "Medical image segmentation using new hybrid level-set method," Proceedings - 5th International Conference BioMedical Visualization, Information Visualization in Medical and Biomedical Informatics, MediVis 2008, no. 1, pp. 71–76, 2008.
- Osher, S. and Sethian, J.A., Fronts Propagating with Curvature De- pendent Speed: Algorithms Based on Hamilton-Jacobi Formulations, J. Comput. Phys. 79, 12-49 (1988). $\frac{43}{43}$

Publications from this work

• C. Aguilar and M. Comer, ``A Marked Point Process Model Incorporating Active Contours Boundary Energy,'' Electronic Imaging, vol. 2018, no. 15, pp. 230\-12304, 2018

• *(draft) C. Aguilar and M. Comer, "Combining Level sets in the Marked Point Process Framework," International Symposium on Visual Computing (ISVC). July, 2019.

Summary of contributions

- Exploration of the MPP combined with:
	- Parametric active contours
	- Level sets
- We used multiple birth and death to sample our space but we also explored using only the level set results
- We obtained preliminary 3D data and trained Neural Networks with this data.

Thanks