

Exploring the Addition of Boundary Energy to the Marked Point Process

Camilo Aguilar School of Electrical Engineering Purdue University July 2019

Overview

Motivation

- Problem statement: MPP is limited to generic shapes
- Illustrative dataset: Fiber reinforced composites

Marked Point Process (MPP)

- Set up: MPP = Point Process + Marks
- Energy minimization using multiple birth and deaths

• Part I: MPP and parametric Active Contours(AC)

- AC boundary energy: Smoothness and Curvature
- Combination of MPP-AC: Disks with deformed boundaries

• Part II: MPP and Level Sets(LS)

- LS boundary energy: Dark regions with strong edges
- Object proposal: LS alone can guide the object proposal

• Future Work

• Deep learning based approaches

Motivation

Introduction

Motivation – Expand the limitations of the Marked Point Process(MPP)

What is the MPP?

- Stochastic framework that models images as configuration of objects
- Considers:
 - Data in macroscopic scale
 - Object geometries
 - Relation between objects and prior knowledge
- Problem:
 - MPP is limited to low-parametric geometries (disks/ellipses/tubes/lines)

Ellipse Model [Zhao et al. 2016]

Fiber Reinforced Composite [ACME Lab Purdue]

Connected Tube [Li et al. 2018] 3

Illustrative dataset

Objective:

Characterization of glass fiber reinforced composite:

Structural Features

- Object location/orientation
- Volume ratio

Mechanical Features

- Fiber breakout
- Fiber pullout

Challenges

Irregular shapes
 ➢ Active Contour Modeling

Void representation in composite:

- Low contrast
 Balloon method (MPP-AC)
 - Hybrid LS method (MPP-LS)

Composite cross section:

[ACME Lab Purdue]

Large datasets
 ➢ Hybrid LS method

Volume Size:

 $\begin{array}{c} 2500 \times 2500 \times 1300 \\ \text{voxels} \end{array}$

Imaging and reconstruction noise
 ➤ 3D Filtering

Composite cross section:

[[]ACME Lab Purdue]

Common Segmentation Approaches

Machine Learning

Discriminative Dictionary Learning: Edge Classifier

Sparse training data

Original Image

Labeled Image

Classified Edges

[Mairal 2008]

Markov Random Fields

Pixelwise segmentation

Original Image

[Comer 2000] EMMP

EMMPM. Labels = 9

Active Contours only

Hybrid Level Sets Initialization dependent

Original Image

Detected Contours

[Yan 2008] Watershed by flooding Requires careful energy/marker setting

Distance Transform

Watershed Segmentation [Beucher 1979]

Marked Point Process

Marked Point Process

- Set up point process
 - Define a Point Process x on lattice $K \subset \mathbb{R}^d$
 - Each point k_i in $\mathbf{x} = \{k_1, \dots, k_n\}$ denotes a coordinate.
 - *n* is a random variable
- Set up marks
 - A mark space *M* describes objects' parameters
 - Single marked object is $\omega_i = (k_i, m_i) \in K \times M$
- MPP = point process + marks
 - An object configuration is $\mathbf{w} = \{\omega_1, \dots, \omega_n\}$
 - An MPP **w** is defined on space $\Omega = K \times M$

Realization of a Point Process

Sample marked object $\omega_i = (k_i, a_i, b_i, \theta_i)$

Realization of an MPP

MPP density

Density:

$$p(\boldsymbol{w}) = \frac{1}{z_{\Omega}} \exp(-U(\boldsymbol{w}))$$

Gibbs Energy:

$$U(w) = \sum_{\omega_i \in w} U_d(\omega_i) + \sum_{\substack{\omega_i \sim \omega_j \\ \omega_i, \ \omega_j \in w}} U_p(\omega_i, \omega_j)$$

Data Term:

 $U_d(\omega_i) \propto \text{ object fitting}$

Prior Term:

 $U_p(\omega_i, \omega_j) \propto \text{overlap penalizer}$

w: Marked object configuration ω_i : Single Marked i^{th} object z_{Ω} : Normalizing constant $\omega_i \sim \omega_j$: Neighbor relation

Data Term: $U_d(\omega_i)$

Prior Term: $U_p(\omega_i, \omega_j)$

Energy Optimization

Goal: find optimal configuration

 $\widehat{\boldsymbol{w}} = \arg \max_{\boldsymbol{w} \in \Omega} p(\boldsymbol{w}) = \arg \min_{\boldsymbol{w} \in \Omega} U(\boldsymbol{w})$

Use Markov Chain Monte Carlo with stochastic annealing

Markov Chain on Ω needs to be: birth Finite Aperiodic Irreducible • death

```
Annealing scheme:
T^{k+1} = T^k \alpha, \qquad \alpha \in (0,1)
```

Multiple Birth and Death (1)

Reversible

 $\boldsymbol{w} = \{\omega_1\} \qquad \boldsymbol{w}' = \{\omega'_1, \omega'_2 \dots \omega'_n\}$

Deaths

Multiple Birth and Death (2)

 $w = \{\omega_1\}$ $w' = \{\omega'_1, \omega'_2 ... \omega'_n\}$

[Descombes 09]

[Kaggle Datascience Bowl 2018]

MPP-Active Contours

Active Contour Model

- Define curve: $C_t = \{(x_t, y_t)\}$, where $t \in [0, 2\pi]$
- Energy Function:

$$E(C_t) = \int_{0}^{2\pi} E_{\text{int}}(C_t) + E_{\text{ext}}(C_t) dt$$

• Internal Energy:

$$E_{\text{int}}(C_t) = \int_{0}^{2\pi} \frac{1}{2} [\alpha |C'_t|^2 + \beta |C''_t|^2 dt$$

$$\int_{0}^{2\pi} \frac{1}{2} [\alpha |C'_t|^2 + \beta |C''_t|^2 dt]$$
Elastic Term Curvature Term

- External Energy: $E_{\text{ext}}(C_t) = -\kappa_1 |\nabla I(x_t, y_t)|^2 - \kappa_2 |I_{\text{dark}}(x_t, y_t)| + \kappa_3 \vec{n}_C(t)$
 - Stop at edges

Attract to dark regions

Inflate the Contour [Cohen 1993]

 C_t : Parametric contour C_t ': First derivative w/r to t C_t '': Second derivative w/r to t x_t, y_t : Coordinates in contour \vec{n}_C : Normal to the contour I: Image Domain I_{dark} : Image is 1 in pixels

Boundary Parameters

$$E(C_t) = \int_{0}^{2\pi} \frac{1}{2} [|C_t'|^2 + \beta |C_t''|^2 - 0.05 |\nabla I(x_c, y_c)|^2 - 0.1 \,\vec{n}_c(t) dt]$$

Initial Contour

 $\beta = 0$

Boundary Energies

β	C'(t)	C''(t)
0	876.46	44.83
10	818.88	15.77
100	746.83	5.00

 $\beta = 10$

$$\beta = 100$$

Active Contours in the MPP

- Initial Mark Object Field:
 - Disks with mark $\omega_i = \{k_i, m_i\} \in \Omega, \ \Omega \subset K \times M$
 - $M = [r_{\min}, r_{\max}]$
- Modified Marked Object Field:
 - Define energy functional $E(\omega_i)$ on space W
 - Parametrize curve $\omega_t \in \mathbf{W}$
 - Perform energy minimization on $E(\omega_t)$ to evolve ω_t into $\widetilde{\omega}_t \in \mathbf{W}$

K: Image lattice Ω : Configuration space W: Parametric space w: Marked object configuration ω_i : Single marked i^{th} object $\widetilde{\omega_i}$: Evolved marked i^{th} object \widetilde{w} : Evolved object configuration Energies

MPP-AC Energy

• Gibbs Process with probability density

$$p(\boldsymbol{w}) = \frac{1}{Z} \exp\{-U(\boldsymbol{w})\}$$

Energy Function

$$U(w) = \sum_{\omega_i \in w} U_d(\omega_i) + \sum_{\omega_i \sim \omega_j} U_p(\omega_i, \omega_j)$$

- Data Energy: Active Contour Energy $U_d(\omega) = \min_{\omega_i} \left\{ \int_0^1 E_{int}(\omega_t) + E_{ext}(\omega_t) dt \right\} = U_d(\widetilde{\omega_t})$
- Prior Energy

$$U_p(\omega_i, \omega_j) = \begin{cases} A_{\text{overlap}}\left(\widetilde{\omega_{t_i}}, \widetilde{\omega_{t_j}}\right) & \text{if } A_{\text{overlap}}\left(\widetilde{\omega_{t_i}}, \widetilde{\omega_{t_j}}\right) \le T_{\text{overlap}} \\ \infty & \text{otherwise} \end{cases}$$

w: Marked object configuration ω_i : Single marked i^{th} object $\widetilde{\omega_i}$: Evolved marked i^{th} object \widetilde{w} : Evolved object configuration **z**: Normalizing Constant $\omega_i \sim \omega_i$: Neighbor Relation

 ω_i

Simulation: Multiple Birth and Death

Simulation: Multiple Birth and Death

Sample Results I: Human Cells

[Kaggle Datascience Bowl 2018]

Original Image

Ground Truth

 $\beta = 10$

Marks

MPP-AC Results II: voids

Original Image

MPP-AC

Original Image

MPP-AC

MPP-AC Results III: voids and fibers

Original Image

MPP-AC for voids only

MPP-AC combined with MPP Connected tube

Parametrization Constrains

Contributions of this work

- Exploration of the MPP-AC to microscopy images
- Adaptation of the classic AC energy that involves smoothness and curvature.
 - Exploration of the curvature weighting effects

 Adaptation of the balloon force to capture objects with irregular shapes

MPP-Level Sets

What is a level set?

Given a function $\phi \colon \mathbb{R}^d \to \mathbb{R}$ Curve: $C_t = \{k \in \mathbb{R}^d | \phi(k) = 0\}$ is the zeroth level set of ϕ

Example of level sets and object representations

Example of initial level set of ϕ

[Wikipedia]

Summary of level sets approach

Advantages of LS vs parametric AC

- Level Sets can:
 - Adapt better to topological changes
 - Allow object merging and splitting
 - Facilitate the dimension increase

Level Sets

MPP-AC

Hybrid Level Sets Energy + Shape prior

- Energy Function: $E(\phi) = \alpha E_{\text{region}}(\phi) + \beta E_{\text{edge}}(\phi) + \gamma E_{\text{shape}}(\phi)$ (Yan 2008)
- K: Image domain ϕ : Embedding function $H(\cdot)$: Heaviside function $g(\cdot)$: Edge function ϕ_o : Level set geometric prior

$$E_{\text{edge}}(\phi) = \int_{k \in K} g(k) |\nabla H(\phi)| dk$$

Attract to edges

$$E_{\text{prior}}(\phi) = \int_{k \in K} \left(H(\phi) - H(\phi_o) \right)^2 dk$$

Preserve irreducible Markov Chain

Original Image

Manual label

 E_{edge}

Hybrid Level Sets Boundary Penalizer

Level Sets in the MPP

- MPP Object Field:
 - Ellipses with mark $\omega_i = (k_i, m_i) \in \Omega$
 - $M = [a_{\min}, a_{\max}] \times [b_{\min}, b_{\max}] \times [\theta_{\min}, \theta_{\max}]$
- Marked Object:
 - Use MPP object $\omega = (k_i, m_i)$ as initialization and shape prior ϕ_o
 - Evolve level set ϕ to $ilde{\phi}$
 - Parametrize evolved level set $ilde{\phi}$ to $\widetilde{\omega}$ (t)

From LS to parametric energy

MPP-LS Energy

Gibbs Process with probability density

$$p(\boldsymbol{w}) = \frac{1}{Z} \exp\{-U(\boldsymbol{w})\}$$

w: Marked Object Configuration ω_i : Single Marked i^{th} Object $\widetilde{\omega_i}$: Evolved Marked i^{th} Object z: Normalizing Constant $\omega_i \sim \omega_j$: Neighbor Relation E_o : Contour energy parameter

• Energy Function

$$U(\mathbf{w}) = \sum_{\omega_i \in \mathbf{w}} U_d(\omega_i) + \sum_{\omega_i \sim \omega_j} U_p(\omega_i, \omega_j)$$

- Prior Energy $U_p(\omega_i, \omega_j) = \begin{cases} A_{\text{overlap}}(\widetilde{\omega_i}, \widetilde{\omega_j}) & \text{if } A_{\text{overlap}}(\widetilde{\omega_i}, \widetilde{\omega_j}) \leq T_{\text{overlap}} \\ \infty & \text{otherwise} \end{cases}$
- Data Energy $U_{d}(\omega_{i}) = \begin{cases} 1 - \exp\left(-\frac{E(\widehat{\omega}) - E_{o}}{3E_{o}}\right) & E(\widehat{\omega}) \ge E_{o} \\ \left(\frac{E(\widehat{\omega})}{E_{o}}\right)^{\frac{1}{3}} - 1 & \text{otherwise} \end{cases}$

Human red blood cells

Original Image

Ground Truth

MPP-LS 32 [Broad Bioimage Benchmark Collection]

MPP-AC

F1 Scores

- Background
 - Pixelwise segmentation
- Outlines
 - Edges separated by a distance < 2 pixels
- Counts
 - Intersection over union IOU > 80%

Method	Background	Outlines	Counts
MPP-AC	0.790	0.680	0.829
MPP-LS	0.843	0.820	0.916
Hybrid-LS	0.432	0.784	-

NiCrAl Particles

Original Image

MPP

MPP-LS

Multiple Object Level Set

Goal: Use level sets to propose objects

Voids in fiber reinforced composites

Original Image

Level Sets Only

MPP-LS

Contributions of this work

- Addition of the level sets method to the MPP model
- Extension of the a Hybrid level sets to incorporate a shape prior

The use of level sets results to provide object proposals

Extension to 3D

Use MPP-LS at each slice and filter

Towards Deep Learning

U-Net beats its training data

Original Image

- 3D U-Net ٠ Generalizes data extremely well
- 3D U-Net improves ٠ the results of its training data
- The GPU setup ٠ makes it significantly faster than MPP-LS

Training Data

U-Net

Fiber Class By Angles ϕ, θ

Faster RCNN could help guiding MCMC

Faster-RCNN

Original Image

Fast RCNN has parallel relations with RJMCMC:

- Anchor Proposal \equiv birth death process
- Bounding Box Refinement ≡ perturbations

Faster-RCNN Results

References

- M. Kulikova, I. Jermyn, X. Descombes, E. Zhizhina, and J. Zerubia, "Extraction of arbitrarily-shaped objects using stochastic multiple birth-and-death dynamics and active contours," Electronic Imaging, vol. 7533, 2010
- H. Zhao and M. Comer, "A hybrid markov random field/marked point process model for analysis of materials images," IEEE Transactions on Computational Imaging, vol. 2, no. 4, pp. 395–407, Dec 2016
- T. Li, M. Comer, and J. Zerubia, "A Connected-Tube MPP Model for Object Detection with Application to Materials and Remotely-Sensed Images," Proceedings - International Conference on Image Processing, ICIP, pp. 1323–1327, 2018.
- Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman. Supervised Dictionary Learning. [Research Report] RR-6652, INRIA. 2008, pp.15. inria-00322431
- M. L. Comer and E. J. Delp, "The EM/MPM algorithm for segmentation of textured images: Analysis and further experimental results," IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1731–1744, 2000.
- Kass, M., Witkin, A. & Terzopoulos, "Snakes: Active contour models," D. Int J Comput Vision (1988) 1: 321
- X. Descombes, R. Minlos, and E. Zhizhina, "Object extraction using a stochastic birth-and-death dynamics in continuum," Journal of Mathematical Imaging and Vision, vol. 33, no. 3, pp. 347–359, Mar 2009.
- Z. Yan, B. J. Matuszewski, L. K. Shark, and C. J. Moore, "Medical image segmentation using new hybrid level-set method," Proceedings - 5th International Conference BioMedical Visualization, Information Visualization in Medical and Biomedical Informatics, MediVis 2008, no. 1, pp. 71–76, 2008.
- Osher, S. and Sethian, J.A., Fronts Propagating with Curvature De-pendent Speed: Algorithms Based on Hamilton-Jacobi Formulations, J. Comput. Phys. 79, 12-49 (1988).

Publications from this work

 C. Aguilar and M. Comer, ``A Marked Point Process Model Incorporating Active Contours Boundary Energy," Electronic Imaging, vol. 2018, no. 15, pp. 230\-12304, 2018

 *(draft) C. Aguilar and M. Comer, "Combining Level sets in the Marked Point Process Framework," International Symposium on Visual Computing (ISVC). July, 2019.

Summary of contributions

- Exploration of the MPP combined with:
 - Parametric active contours
 - Level sets
- We used multiple birth and death to sample our space but we also explored using only the level set results
- We obtained preliminary 3D data and trained Neural Networks with this data.

Thanks