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Overview

* Motivation
* Problem statement: MPP is limited to generic shapes
* |llustrative dataset: Fiber reinforced composites

 Marked Point Process (MPP)
e Set up: MPP = Point Process + Marks
* Energy minimization using multiple birth and deaths

e Part I: MPP and parametric Active Contours(AC)
* AC boundary energy: Smoothness and Curvature
 Combination of MPP-AC: Disks with deformed boundaries

e Part Il: MPP and Level Sets(LS)
* LS boundary energy: Dark regions with strong edges
* Object proposal: LS alone can guide the object proposal

* Future Work
* Deep learning based approaches



Motivation



Introduction

Motivation — Expand the limitations of the Marked Point Process(MPP)

What is the MPP?

/° Stochastic framework that models images as configuration of objects \
e Considers:
e Data in macroscopic scale
* Object geometries
e Relation between objects and prior knowledge
* Problem:
K * MPP is limited to low-parametric geometries (disks/ellipses/tubes/lines) /

NiAICr Ellipse Model Fiber Reinforced Composite Connected Tube
[Zhao et al. 2016] [ACME Lab Purdue] [Li et al. 2018]



lllustrative dataset

Objective:
Characterization of glass fiber reinforced composite:

* Structural Features
* Object location/orientation
* Volume ratio '

e Mechanical Features
* Fiber breakout
* Fiber pullout

Cone beam X-
Ray Reconstruction
tomography

[Argonne National Labs] [Tomopy by ACME Lab]

Raw Volume

[Dupont]




Challenges

* Irregular shapes
» Active Contour Modeling

=) \oid representation
in composite:

* Low contrast
» Balloon method (MPP-AC)

C it
» Hybrid LS method (MPP-LS) === Composite cross

section:

[ACME Lab Purdue]

e Large datasets

> Hybrid LS method m=)  \olume Size: | 2500 X 2500 x 1300
voxels

* Imaging and reconstruction noise
» 3D Filtering mmm)  Composite cross

section:

[ACME Lab Purdue]



Common Segmentation Approaches

Machine Learning Active Contours only
Discriminative Dictionary Learning: Edge Classifier Hybrid Level Sets
Sparse training data Initialization dependent

R W “ ": 5
AL d .\\
Original Image ‘ Labeled Image Classified Edges
[Mairal 2008] Original Image Detected Contours
. [Yan 2008]
Markov Random Fields Watershed
EM/MPM Watershed by flooding

Pixelwise segmentation Requires careful energy/marker setting

Original Image EMMPM. Labels =9 Distance Transform Watershed Segmentation 6
[Comer 2000] [Beucher 1979]



Marked Point Process



Marked Point Process

* Set up point process
 Define a Point Process x on lattice K ¢ R%
* Each point k; in x = {k4, ..., k,,} denotes a —>
coordinate.

* 1S a random Variable Realization of a Point Process
y
* Set up marks /A

- (T

A mark space M describes objects’ parameters
* Single marked objectis w; = (k;,m;) € KXM

Sample marked object
w; = (ky, a;, by, 6;)

* MPP = point process + marks
* An object configurationis w = {w4, ..., w,,}
 An MPP w is defined on space (). = KXM

Realization of an MPP



MPP density

Density: w: Marked object
1 configuration
_ _ w;: Single Marked " object
p(W) Zq exp( Ulw) ) Zq: Normalizing constant

w;~ wj : Neighbor relation

Gibbs Energy:

Uw) = Y Ugd+ ) Up(wp )

W;EW Wi~Wj

dataterm ..~ .éw

prior term

Data Term: U; (w;)

Data Term:

{ U;(w;) < object fitting

Prior Term:

{ U, (a)l-, a)j) « overlap penalizer




Energy Optimization

Goal: find optimal configuration [ W = argmaxp(w) = argminU(w) }

Use Markov Chain Monte Carlo with stochastic annealing

'Markov Chain on Q needs to be: )(Annealing scheme: A
. . birth
* Finite o Tkl =Tk q, a€(0,1)
* Aperiodic [ O
* Irreducible R
\_* Reversible death I\ J
Multiple Birth and Death (1) Multiple Birth and Death (2)
Current Configuration ~ Multiple Birth. Poisson Process Birthmap Current Configuration Multiple Births
Hﬂ HDeaths -H-
Y Y
w= {w;} w = {wi,w,. 0} Deaths

w={w;} W= {wi0,. 05}

[Descombes 09] [Kaggle Datascience Bowl 2018]



MPP-Active Contours



Active Contour Model

C;: Parametric contour
C.’: First derivative w/r to t

° Deﬁne curve: Ct — {(xt’ yt)}' Where t E [0,27'[] C:": Second derivative w/r to t

X¢, V¢ Coordinates in contour
ne:Normal to the contour

* Energy Function: I': Tmage Domain
21T lgark: Image is 1 in pixels
with low intensities
BC) = [ Bime(C) + Eexe(Co) d
0
* Internal Energy: .
—_— 1 12 C” 2 d
Einc(Cr) = E[“|Ct| + BIC: |“ dt
0 Elastic Term Curvature Term

e External Energy:
Eext(Ct) = =K1 |VI(x, Yt)|2 — K2 [lgark(Xe, ye)| + K3ne(t)

Stop at edges Attract to dark regions Inflate the Contour
[Cohen 1993]

[Kass 1988]
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Boundary Parameters

E(Ce) = |Ct|2 + BICt'|? — 0.05 |VI(xe, ye)|? — 0.1 nc(t)dt

Initial Contour

B =10

=100

Boundary Energies

g o) | o)

0 876.46 | 44.83
10 | 818.88 | 15.77
100 | 746.83 | 5.00

13



Active Contours in the MPP

K: Image lattice
Q: Configuration space

* Initial Mark Object Field: W Parametric space

w: Marked object configuration

* Disks with mark w; = {k;,; m;} € Q, Q € K xM @ Sinslemarked {object

@;: Evolved marked it" object
° — :
M - [rmln’ 7"rnaX]

w: Evolved object configuration
* Modified Marked Object Field:

* Define energy functional E(w;) on space W
* Parametrize curve wy € W

* Perform energy minimization on E (w¢) to evolve w; into w; € W

[Kulikova, 2009]

_ Sample configuration Sample configuration
Sample ObJeCt Wy w = {wll w3, (1)3} € w= {[‘JIJ (BE, (IFE} eEW

E,,
. Evolve curves
Parametrize .
according to
- - w; to curves E(w,)
in space W ‘




Energies

w: Marked object configuration
I\/l P P_AC E n e r w;: Single marked it" object
gy @;: Evolved marked i object
w: Evolved object configuration

z: Normalizing Constant
w;~ w; : Neighbor Relation

Gibbs Process with proba?ility density
p(w) = exp{~U(w)}

Energy Function
Uw) = Y Ug)+ ) Up(@i,0))

W;EW Wi~W;j Wi
* Data Energy: Active1Contour Energy
Ug(w) = rr(})in jEint(wt) + Eexe(wp)dt ¢ = Uq(@y)
4 5 51_

Prior Energy

Up ((Ui» w]_) — onerlap (@p @) if onerlap (5521-, C")\t/]) = Toverlap
00 otherwise

15



Simulation: Multiple Birth and Death

b,: Birth Rate € [0,1]
T: Process Temperature
o: Process Intensity

Algorithm 1 Multiple Birth and Death Algorithm

1: procedure MPP ENERGY MINIMIZATION

22: end procedure

2 Initialization:
3: Create birthmap b,,
4 Initialize b,gte = by, T = T,, 0 = O,,.
5: Birth Step:
6: Visit pixels in raster order o
7 @' + draw a sample from space Q ." \'\
8 Add @' to conhguratlon w with probablllty Cbrate 1
9: Evolve ®' to @ _.---- - Sl
10 Death Step: .~ T
11: Sort all eler;nents of w by decreaang energy.
12: For every ébject @; in w calculate: \
' ' _I._ o_(“‘\I)UW)IZL—k(W ;|Y) !
13: drale(“i) _\ l+o‘“e\p' (Wiy) ;-klw ® )nl
14: Delete ; w‘tth probability d,qre (w,)
15: Convergence Test o
16: if all the elements bUrn'du’nng the birth step are killed
during the death step
17: terminate process
18: else
19: T Thxa, o' ok xaac(0,1)
20: goto Birth Step
21:

Modified from [Descombes, 2009]

Initialization
(birth map)

Birth Step

Death Step

Multiple Birth and Death Algorithm

16



Simulation: Multiple Birth and Death

b,: Birth Rate € [0,1]
T: Process Temperature
o: Process Intensity

0.9

0.8

0.7

Algorithm 1 Multiple Birth and Death Algorithm

1
2:
3

: procedure MPP ENERGY MINIMIZATION

Initialization:
Create birthmap b,,

Initialize b,gte = by, T = T,, 0 = O,,.
Birth Step: o Process Inte
Visit pixels in raster order .4
. N
@' + draw a sample from space Q s \

Add @' to conhguratlon w with probablllty Obrate 1 1

Evolve ® to @' _.---- . Sl
Death Step: .~ N

Sort all eler;nents of w by decreaslqg energy.

For every @bject @; in w calculate: \_,, Energy Change
k) g UWlY)-uvW-w;ly)

I oWexp &
drule(“ ) =+ U(Wy »TA( (Woo,v)! Temperature
v l+0'“’¢\p—r‘*—, q P
ependent

Delete ; w‘}th probability d,qre (w,)
Convergence Test
if all the elements born-du’rmg the birth step are killed

during the death step

terminate process

else

k+1 k

TH  TExa, o' —ofxaac

goto Birth Step

(0,1)

: end procedure

0.6

0.5

rate

0.4

hsity 03

0.1

Modified from [Descombes, 2009]

ob,4te Vs Iterations

0.2

.
a=09
=099
~a = 0.99 a=0.80|
L Il 1 L
10 20 30 40 50 60 70 80 ) 100

Iterations

Unnormalized Energy U(w).a = 0.90

-0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Iteration
17



Sample Results I: Human Cells

—
1
E(Ct) = j E [lCt{lz + ﬁlCtnlz — 0.05 |\71(xc,yc)|2 dt [Kaggle Datascience Bowl 2018]

0

Original Image Ground Truth




MPP-AC Results Il: voids

Original Image MPP-AC 19



MPP-AC Results Ill: voids and fibers

MPP-AC combined with MPP Connected
tube

Parametrization Constrains




Contributions of this work

* Exploration of the MPP-AC to microscopy
Images

* Adaptation of the classic AC energy that
involves smoothness and curvature.

* Exploration of the curvature weighting effects

* Adaptation of the balloon force to capture
objects with irregular shapes



MPP-Level Sets



What is a level set?

Given a function ¢: R? - R
Curve: C; = {k € Rd|qb(k) = 0} is the zeroth level set of ¢

Example of level sets and object representations Example of initial level set of ¢

120

-20

[Wikipedia]

23
[Osher 1987]



Summary of level sets approach

Image Initial Level Set ¢ Modified contour

Contour representation Energy definition Evolve ¢ to local
E(¢) minimum of E(¢)

24



Advantages of LS vs parametric AC

e Level Sets can:

* Adapt better to topological changes
* Allow object merging and splitting
* Facilitate the dimension increase

Level Sets

Level Sets

25



Hybrid Level Sets Energy + Shape prior

* Energy Function: K:Image domain
¢: Embedding function

E(¢) —_ aEregion(¢) + :BEedge((p) + VEShape(¢) H(-): Heaviside function

g(-) : Edge function

[Yan 2008] ¢, Level set geometric prior

Eregion((p) = f (k —wH(¢p)dk

k€K Attract to dark regions

Eedge (¢) - J g(k) |VH ((,b) |dk Original Image Manual label

keK Attract to edges

Eprior((p) - f (H(¢) — H((,bo))zdk
k€K Preserve shape

Preserve irreducible Markov Chain

Eedge Eregion 26



Hybrid Level Sets Boundary Penalizer

E(¢) = f JWIVH@DIdk ¢, = pdiv(g(k)Vp) 90 =1

keEK

1+c |V fg*K|

div: divergence operator
c: Slope constant

f o Gaussian filter

*: Convolution operator

27



Level Sets in the MPP

* MPP Object Field:
* Ellipses with mark w; = (k;, m;) € Q
* M = [amin, @max] X[Pmins Pmax|*X[0min, Omax]

* Marked Object:
* Use MPP object w = (k;, m;) as initialization and shape prior ¢,
e Evolve level set ¢ to ¢
e Parametrize evolved level set $ to w(t)

Initial level set ¢ Example of evolved

) ~ Parametric object w;
& shape prior ¢, level set ¢ J ‘

Example of object w;

O O -»-» O O

—— Shape Prior ¢,
= Deformed level set ¢



From LS to parametric energy

Level set energy: Original Image

E(¢) = f alk — WHG) +  Bgo(IVH@) +y(H(@) — Ho))? dk

keK
Parametric energy: lregions l edges Good fit
1
Bo)=7— | at-mpdi+——| pg,0a
1Dl |[dw;i| Jecas
tED&;’i
Dg: Area inside w; dw: Line denoting contour w;
E(w) = 0.32
) E, =040 drate(w) = 0.33
Quality Term: t
- Bad fit
( ~
E(w) — E
1 —exp (—%) E(w) = E,
)
Ug(w;i) = A 1 e
‘ (E(a)) /3 T
—1 otherwise
\ E, E(w) = 0.76
drate(w) = 0.92

. .
0.4 0.5 0.6 0.7 0.8 0.9 1
Contour Energy 3 0



MPP-LS Energy

* Gibbs Process with probability density wi: Single Marked 1" Object

@;: Evolved Marked it" Object
z: Normalizing Constant

p (W) — exp{— U (W)} w;~ w; : Neighbor Relation

Z E, : Contour energy parameter

* Energy Function
Uw) = Y Ug)+ ) Up(@i,0))
WiEW a)i~a)j
* Prior Energy
A w;,w;) if A w;,w;) <T
Up(a)i»wj) = { overlap( l J) overlap( l J.) overlap
o otherwise

* Data Energy

( ~
E((‘))_Eo
1 — — E(w) > E
exp(-25—2) 5@ 2 B,
Ug(w;) = A 1

E(®)\3 .
—1 otherwise
\ EO

31



Human red blood cells

Original Image Ground Truth

MPP-AC

[Broad Bioimage Benchmark Collection]



F1 Scores

* Background

* Pixelwise segmentation

e Qutlines

* Edges separated by a distance < 2 pixels

 Counts

* Intersection over union IOU > 80%

Method Background | Outlines | Counts
MPP-AC | 0.790 0.680 0.829
MPP-LS 0.843 0.820 0.916
Hybrid-LS | 0.432 (.784

33



NiCrAl Particles

Original Image




Multiple Object Level Set

Goal: Use level sets to propose objects

~—» Birth Step

Algorithm 2 Using Level Sets to simulate Multiple Births Given w
1: procedure MPP ENERGY MINIMIZATION IN IMAGE K

2: Initialization:
3: Initialize byare = by, T =Ty, 0 = 04, W = {}

4: Birth Step:

5: Initialize a level set ¢(k) at a random location

6: Evolve O(}.) to O(A) Initlallze random ¢
7 Parametrize every closed contour &' in ¢(k) Evolve ¢ to zi)

8: Calculate a best fitting marked object w’ for for each contour &'

9: Call w' = {w],w}, ...,w,} the new configuration.

10: Add the configuration to the current configuration w < w U w’

11: Death Step

12: For every object w in w calculate:
13: a, = exp [ML;}M] , draw p form a uniform distribution over [0, 1]
. L Parametrize all level sets
14: if p< % I / / /
o w ={wi, w; ..., wp}

15: remove W: w — w — w !

’ wWewUuw
16: if n < Max Iterations
17: Update parameters: "1 <« TF x o, "' o xa,nen+1
18: goto Birth Step

19: end procedure

— Death Step




Voids in fiber reinforced composites

Original Image Level Sets Only MPP-LS

36



Contributions of this work

e Addition of the level sets method to the MPP
model

* Extension of the a Hybrid level sets to
incorporate a shape prior

* The use of level sets results to provide object
proposals



Extension to 3D



Use MPP-LS at each slice and filter

Procedure to obtain a 3D object Example of D Cross Sections

. Detected Objects
Missing Objects

Connected

3D
Component - Gaussian

Labeling Filtering

39



Towards Deep Learning



U-Net beats its training data

Original Image Training Data

Fiber Class

By Angles ¢, 6
3D U-Net
Generalizes data
extremely well

3D U-Net improves
the results of its
training data

The GPU setup
makes it significantly
faster than MPP-LS

Corrections 41



Faster RCNN could help guiding MCMC

classifier
Rol li
” pooiing 100

Region Proposal Networ] \

Fast RCNN has parallel relations with RIMCMC:

* Anchor Proposal = birth death process
* Bounding Box Refinement = perturbations

feature maps

Faster-RCNN Anchor Proposals
Original Image

LI -
.

42




References

M. Kulikova, I. Jermyn, X. Descombes, E. Zhizhina, and J. Zerubia, “Extraction of arbitrarily-shaped
objects using stochastic multiple birth-and-death dynamics and active contours,” Electronic Imaging,
vol. 7533, 2010

H. Zhao and M. Comer, “A hybrid markov random field/marked point process model for analysis of
materials images,” IEEE Transactions on Computational Imaging, vol. 2, no. 4, pp. 395-407, Dec 2016

T. Li, M. Comer, and J. Zerubia, “A Connected-Tube MPP Model for Object Detection with Application to
Materials and Remotely-Sensed Images,” Proceedings - International Conference on Image Processing,
ICIP, pp. 1323-1327, 2018.

Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman. Supervised Dictionary
Learning. [Research Report] RR-6652, INRIA. 2008, pp.15. inria-00322431

M. L. Comer and E. J. Delp, “The EM/MPM algorithm for segmentation of textured images: Analysis and
further experimental results,” IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1731-1744,
2000.

Kass, M., Witkin, A. & Terzopoulos, “Snakes: Active contour models,”D. Int ] Comput Vision (1988) 1:
321

X. Descombes, R. Minlos, and E. Zhizhina, “Object extraction using a stochastic birth-and-death
dynamics in continuum,” Journal of Mathematical Imaging and Vision, vol. 33, no. 3, pp. 347-359, Mar
20009.

Z.Yan, B. J. Matuszewski, L. K. Shark, and C. J. Moore, “Medical image segmentation using new hybrid
level-set method,” Proceedings - 5th International Conference BioMedical Visualization, Information
Visualization in Medical and Biomedical Informatics, MediVis 2008, no. 1, pp. 71-76, 2008.

Osher, S. and Sethian, J.A., Fronts Propagating with Curvature De- pendent Speed: Algorithms Based on
Hamilton-Jacobi Formulations, J. Comput. Phys. 79, 12-49 (1988).



Publications from this work

e C. Aguilar and M. Comer, A Marked Point Process Model

Incorporating Active Contours Boundary Energy," Electronic
Imaging, vol. 2018, no. 15, pp. 230\-12304, 2018

e *(draft) C. Aguilar and M. Comer, “Combining Level sets in
the Marked Point Process Framework,” International
Symposium on Visual Computing (ISVC). July, 2019.



Summary of contributions

* Exploration of the MPP combined with:
* Parametric active contours
e Level sets

* We used multiple birth and death to sample our
space but we also explored using only the level set
results

* We obtained preliminary 3D data and trained
Neural Networks with this data.
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